Kumaraswamy exponential distribution: Compute the Rényi, Havrda and Charvat, and Arimoto entropies of the Kumaraswamy exponential distribution
Description
Compute the Rényi, Havrda and Charvat, and Arimoto entropies of the Kumaraswamy exponential distribution.
Usage
re_kexp(lambda, a, b, delta)
hce_kexp(lambda, a, b, delta)
ae_kexp(lambda, a, b, delta)
Value
The functions re_kexp, hce_kexp, and ae_kexp provide the Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Kumaraswamy exponential distribution and \(\delta\).
Arguments
a
The strictly positive shape parameter of the Kumaraswamy distribution (\(a > 0\)).
b
The strictly positive shape parameter of the Kumaraswamy distribution (\(b > 0\)).
lambda
The strictly positive parameter of the exponential distribution (\(\lambda > 0\)).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Details
The following is the probability density function of the Kumaraswamy exponential distribution:
$$
f(x)=ab\lambda e^{-\lambda x}\left(1-e^{-\lambda x}\right)^{a-1}\left\{ 1-\left(1-e^{-\lambda x}\right)^{a}\right\} ^{b-1},
$$
where \(x > 0\), \(a > 0\), \(b > 0\) and \(\lambda > 0\).
References
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81(7), 883-898.